Insight into the structure of silver cyanide from (13)C and (15)N solid-state NMR spectroscopy.

نویسندگان

  • David L Bryce
  • Roderick E Wasylishen
چکیده

The structure of silver cyanide has been investigated by solid-state multinuclear magnetic resonance spectroscopy. Carbon-13 and nitrogen-15 NMR spectra of magic-angle-spinning (MAS) and stationary powder samples of isotopically enriched Ag(13)CN, Ag(13)C(15)N, and AgC(15)N have been acquired at the external applied magnetic field strengths 4.7, 7.05, and 9.4 T. Axially symmetric carbon and nitrogen chemical shift (CS) tensors provide evidence for linearity of the polymeric (-Ag-CN-)(n)() chains. A two-site model is required to successfully simulate the (13)C MAS NMR line shape, which is dominated by indirect nuclear spin-spin coupling between (109/107)Ag and (13)C nuclei. In combination with relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations on model AgCN fragments, the (13)C MAS NMR results show that 30 +/- 10% of the silver sites are disordered, that is, either -NC-Ag-CN- or -CN-Ag-NC-, and 70 +/- 10% of the silver sites are ordered, that is, -NC-Ag-NC-. Effective dipolar coupling data extracted from (13)C NMR spectra of stationary samples allow an upper limit of 1.194 A to be placed on the carbon-nitrogen internuclear distance. After incorporation of the effects of anisotropic indirect nuclear spin-spin coupling and motional averaging on the NMR-derived distance, a corrected value of r(CN) = 1.16 +/- 0.03 A is obtained. This work provides an example of the type of information which may be obtained from solid-state NMR studies of disordered materials and how such information may complement that available from diffraction studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing structural and motional features of the C-terminal part of the Human Centrin 2/P17-XPC microcrystalline complex by solid-state NMR spectroscopy.

Insight into structural and motional features of the C-terminal part of the Human Centrin 2 in complex with the peptide P17-XPC was obtained by using complementary solid-state NMR methods. We demonstrate that the experimental conditions and procedures of sample crystallization determine the quality of solid-state NMR spectra and the internal mobility of the protein. Two-dimensional (2D) (13)C-(...

متن کامل

Solid-State NMR Spectroscopic Approaches to Investigate Dynamics, Secondary Structure and Topology of Membrane Proteins

Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, P solid...

متن کامل

Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR.

Histidine structure and chemistry lie at the heart of many enzyme active sites, ion channels, and metalloproteins. While solid-state NMR spectroscopy has been used to study histidine chemical shifts, the full pH dependence of the complete panel of (15)N, (13)C, and (1)H chemical shifts and the sensitivity of these chemical shifts to tautomeric structure have not been reported. Here we use magic...

متن کامل

Targetry for cyclotron production of no-carrier-added cadmium-109 from natAg(p,n)109Cd reaction

Background: Solid targets that consist of powder and electrodeposited targets are used commonly to produce radionuclides by accelerators. Since silver is easily electrodeposited in cyanide baths and has a very excellent thermal conductivity, the electrodeposited target is preferable to produce 109Cd. To avoid cracking or peeling of the target during bombardment, it should have a level surface a...

متن کامل

Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra.

The time required for data acquisition and subsequent spectral assignment are limiting factors for determining biomolecular structure and dynamics using solid-state NMR spectroscopy. While strong magnetic dipolar couplings give rise to relatively broad spectra lines, the couplings also mediate the coherent magnetization transfer via the Hartmann-Hahn cross-polarization (HH-CP) experiment. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 41 16  شماره 

صفحات  -

تاریخ انتشار 2002